Object Detection

Comprehensive guide for using SegVision API for object detection

Object Detection API

Request

  • Method: POST
  • URL: /api/qwen-open-ai
  • Headers:
    • Content-Type: application/json
  • Body:
    {
      "imageBase64": "base64-encoded image data",
      "prompt": "optional custom instruction, uses default if not provided"
    }

Response

  • Success Response:

    {
      "bbox_2d": [[x1, y1, x2, y2]],
      "label": ["detected object labels"],
      "description": "object description"
    }
  • Error Response:

    {
      "error": "error message",
      "code": error status code
    }

Error Codes

  • 401: User not logged in
  • 403: Insufficient credits
  • 400: Image data is empty
  • 500: Server internal error

Example

// Example request
const response = await fetch('/api/qwen-open-ai', {
  method: 'POST',
  headers: {
    'Content-Type': 'application/json'
  },
  body: JSON.stringify({
    imageBase64: "...",
    prompt: "Detect all vehicle positions in the image"
  })
});

// Example response
{
  "bbox_2d": [[100, 150, 300, 350], [400, 200, 600, 400]],
  "label": ["car", "truck"],
  "description": "The image contains two motor vehicles"
}

Notes

  1. User login and sufficient credits are required
  2. Image base64 data should not exceed 10MB
  3. Default prompt: "Outline the positions of traffic accidents in the image and output all coordinates in JSON format"
  4. The returned bbox_2d format is a 2D array of [x1,y1,x2,y2]

Code Examples

curl -X POST "http://segvision.satxspace.org/api/qwen-open-ai" \
-H "Content-Type: application/json" \
-d '{
  "imageBase64": "-image-base64-data",
  "prompt": "Detect traffic accidents in the image"
}'